مرکز آموزش و رقابت برنامه نویسی پایتون

مرکز آموزش برنامه نویسی پایتون

به راحتی با آموزش‌های آنلاین و ویدئویی شما می‌توانید دوره‌های مرتبط با زبان برنامه‌نویسی پایتون را یاد بگیرید، در آموزش‌های آنلاین هزینه رفت و آمد کلاس‌های حضوری و همچنین هزینه‌های بالای ثبت‌نام در کلاس‌های حضوری را پرداخت نخواهید کرد. و منابع مطالعاتی همیشه در دسترس خواهد بود.

📘 آموزش مقدماتی پایتون

📘 آموزش تکمیلی پایتون

📘 آموزش پردازش تصویر با پایتون

📘 آموزش یادگیری ماشین با پایتون

📘 آموزش تشخیص ایمیل های اسپم با پایتون

۴ مطلب با کلمه‌ی کلیدی «Pandas» ثبت شده است

درس چهارم (داده های متنی و کتابخانه pandas)

دراین درس میخواهیم نگاهی به داده های متنی و کار با کتابخانه pandas بپردازیم.

ابتدا بصورت زیر یک داده متنی معرفی خواهیم کرد .و قبل از معرفی داده، کتابخانه pandas رو ایمپورت میکنیم:


import pandas as pd

time_sentences = ["Monday: The doctor's appointment is at 2:45pm.", 
                  "Tuesday: The dentist's appointment is at 11:30 am.",
                  "Wednesday: At 7:00pm, there is a basketball game!",
                  "Thursday: Be back home by 11:15 pm at the latest.",
                  "Friday: Take the train at 08:10 am, arrive at 09:00am."]

برای اینکه برای ستون این داده متنی، اسمی رو قرار بدهیم از تابع DataFrame بصورت زیر استفاده میکنیم


df = pd.DataFrame(time_sentences, columns=['text'])
df

در حال حاضر داده ما شامل یک ستون هست که هر سطر آن یک متن می باشد و هر ورودی ما شامل یک روز در هفته و همچنین یک یا دو ساعت و دقیقه در بین متن می باشد

❇️ با استفاده از ویژگی str میتوانیم به مجموعه ای از روش های پردازش رشته دسترسی پیدا کنیم.

برای مثال متد str.len نشان دهنده طول متن یا همان تعداد کارکترهای هر رشته می باشد.
df['text'].str.len()

دستور بالا برای ستون text از رشته ورودی ، طول هر رشته را محاسبه میکند و در خروجی چاپ میکند. دقت کنید این ستون شامل 5 سطر می باشد و برای هر سطر بصورت جداگانه تعداد کارکترها را نمایش خواهد داد.

 

0    46
1    50
2    49
3    49
4    54

❇️ حالا اگر بخواهیم بجای تعداد کارکتر، تعداد کلمات رو مشخص کنیم. کافیه ابتدا با متد str.split کلمات یک متن رو با استفاده فاصله بین کلمات جدا کنیم سپس برای محاسبه طول اقدام کنیم:

 

df['text'].str.split().str.len()

0     7
1     8
2     8
3    10
4    10

پس برای مثال رشته اول شامل 7 کلمه و 46 کارکتر می باشد.
 

 

 

۰ نظر موافقین ۰ مخالفین ۰

آموزش چهار کتابخانه برتر علم داده در دوره تکمیلی پایتون

دوره تکمیلی پایتون در واقع پیش نیازی برای دوره پیشرفته پایتون در شاخه های هوش مصنوعی می باشد،در دوره های یادگیری ماشین، پردازش تصویر و داده کاوی با پایتون با یکسری از ماژول ها یا پکیج های پایتون کار خواهیم کرد که جزئیات کامل این ماژول ها در دوره تکمیلی با مثال های گوناگونی که زده می شود بیان خواهد شد. بعد اینکه که کاملا با این ماژول ها آشنا شدید به راحتی میتوانید در دوره پیشرفته پایتون شرکت کنید و خودتون رو برای بازار کار آماده کنید.

در این دوره چهار تا از برترین کتابخانه‌های پایتون [کلیک کنید] در حوزه علم داده آموزش داده می‌شود.

📘 فرمت تمام ویدئوها بصورت mp4 یا wmv می باشد که به راحتی با نرم افزارهای پخش مدیا اجرا خواهند شد.

📘 در صورت بروز هر گونه مشکل در خرید و دانلود با پست الکترونیکی sendticket.py@gmail.com با ما در ارتباط باشید.

📘 سرفصل دوره در بخش زیر قابل مشاهده می‌باشد، بخش‎‌های که به رنگ آبی است بصورت رایگان قابل دانلود می‌باشد.

قیمت: ۴۰,۰۰۰ تومان

کد تخفیف 40 درصدی : winter

لینک ورود به دوره تکمیلی

۰ نظر موافقین ۰ مخالفین ۰

راهنمای سریع (Cheat Sheet) دستورهای پایتون برای علم داده - pandas

برای دانلود راهنمای سریع (Cheat Sheet) دستورهای پایتون برای علم داده میتوانید از طریق لینک زیر اقدام کنید.


این بخش کتابخانه pandas را شامل می شود.


دانلود

۰ نظر موافقین ۰ مخالفین ۰

لیستی از کتابخانه‌ها علم داده در پایتون

NumPy سرنامی برای  Numerical Python است. قدرتمندترین ویژگی این کتابخانه، آرایه‌های n-بُعدی هستند. این کتابخانه همچنین شامل توابع پایه‌ای جبر خطی، تبدیل فوریه، تولید پیشرفته اعداد تصادفی و ابزارهایی جهت یکپارچه‌سازی با دیگر زبان‌های سطح پایین مانند C++ ، C و فورترن (Fortran) است.

SciPy سرنامی برای Scientific Python است. SciPy براساس NumPy ساخته شده و یکی از پرکاربردترین کتابخانه‌ها برای انواع گسترده‌ای از ماژول‌های سطح بالای علمی و مهندسی مانند تبدیل فوریه گسسته (discrete Fourier transform)، جبر خطی، بهینه‌سازی و «ماتریس‌های خلوت یا اسپارس» (Sparse Matrix) محسوب می‌شود.

Matplotlib برای ترسیم انواع گسترده‌ای از نمودارها، از هیستوگرام و نمودارهای خطی گرفته تا نمودارهای حرارتی قابل استفاده است. می‌توان از ویژگی Pylab در ipython notebook (به صورت ipython notebook –pylab = inline) به منظور بهره‌گیری از ویژگی‌ رسم نمودار به صورت خطی استفاده کرد. اگر ویژگی inline توسط کاربر نادیده گرفته شود، pylab محیط ipython را به محیطی بسیار شبیه به «متلب» (Matlab) مبدل می‌کند.

Pandas برای عملیات روی داده‌های ساختار یافته و دستکاری آن‌ها مورد استفاده قرار می‌گیرد. این کتابخانه به طور گسترده‌ای برای «data munging» (این عبارت یک تعریف استاندارد برای انجام تغییرات غیر قابل بازگشت در داده‌ها است. به نظر می‌رسد عبارت mung سرنام برگرفته شده از Mash Until No Good باشد. در واقع، عبارت data munging اغلب به فرآیند دریافت داده‌های خام و تبدیل و نگاشت آن‌ها به دیگر فرمت‌ها به منظور آماده‌سازی مجموعه داده جهت انجام تحلیل‌های تخصصی، اشاره دارد و از آماده‌سازی داده‌ها به عنوان مقدمه‌ای جهت تحلیل‌ها استفاده می‌شود. Pandas در سال‌های اخیر به پایتون اضافه و منجر به افزایش استفاده از آن در جامعه دانشمندان داده شده است.

Scikit Learn کتابخانه‌ای برای یادگیری ماشین است. این کتابخانه بر اساس SciPy، NumPy و matplotlib ساخته شده و شامل ابزارهای کارآمدی برای یادگیری ماشین و مدل‌سازی آماری شامل «دسته‌بندی» (classification)، «رگرسیون» (regression)، «خوشه‌بندی» (clustering) و «کاهش ابعاد» (dimensionality reduction) است.

Statsmodels برای مدل‌سازی آماری مورد استفاده قرار می‌گیرد. این کتابخانه یک ماژول از پایتون است که به کاربران امکان اکتشاف در داده‌ها، تخمین مدل‌های آماری و انجام آزمون‌های آماری را می‌دهد. Statsmodels یک لیست گسترده از «آمار توصیفی» (descriptive statistics)، «آزمون‌های آماری» (statistical tests)، توابع ترسیم نمودار و نتایج آماری برای انواع گوناگونی از داده‌ها و برآوردگرها است.

Seaborn یک کتابخانه پایتون برای بصری‌سازی آماری داده‌ها است. این کتابخانه برای ساخت گرافیک‌های آماری اطلاعاتی و جذاب در پایتون قابل استفاده و برمبنای matplotlib ساخته شده. هدف Seaborn آن است که بصری‌سازی را به بخش مرکزی اکتشاف و ادراک داده‌ها مبدل کند.

Bokeh برای ساخت نمودارهای تعاملی، دشبوردها و برنامه‌های داده در مرورگرهای مدرن مورد استفاده قرار می‌گیرد. این کتابخانه کاربر را قادر به تولید گرافیک‌های ظریف و مختصری به سبک D3.js می‌سازد. علاوه بر آنچه گفته شد، این کتابخانه توانایی تعامل با کارایی بالا در مجموعه داده‌های بسیار بزرگ یا جریانی را دارا است.

Blaze به منظور گسترش توانایی‌های Numpy و Pandas برای مجموعه داده‌های توزیع شده و جریانی، مورد استفاده قرار می‌گیرد. این کتابخانه قابل استفاده به منظور دسترسی داشتن به داده‌ها از طریق گروه کثیری از منایع شامل Bcolz ،MongoDB ،SQLAlchemy ،Apache Spark ،PyTables و دیگر موارد است. Blaze در کنار کتابخانه Bokeh می‌تواند به عنوان یک ابزار بسیار قدرتمند جهت ساخت آثاری بصری (گرافیک‌ها و نمودارها) و دشبوردهای موثر برای مجموعه‌های عظیم داده مورد استفاده قرار بگیرد.

Scrapy کتابخانه‌ای برای «خزیدن در وب» (web crawling) است. این کتابخانه برای کشف الگوهای خاص در داده‌ها بسیار مفید به حساب می‌آید. Scrapy توانایی آغاز به کار کردن در URL خانگی وب‌سایت و کاوش کردن در صفحه وب برای گردآوری اطلاعات را دارد.

SymPy برای «محاسبات نمادین» (Symbolic Computation) مورد استفاده قرار می‌گیرد و دارای طیف وسیعی از توانایی‌ها از ریاضیات نمادین پایه گرفته تا حساب، جبر، ریاضیات گسسته و فیزیک کوانتوم است. دیگر ویژگی کارآمد این کتابخانه، توانایی قالب‌بندی نتایج محاسبات به صورت کد «لاتک» (LaTeX) است.

Requests برای دسترسی به وب است. این کتابخانه به صورت مشابه با کتابخانه پایتون استاندارد urllib2 مورد استفاده قرار می‌گیرد، اما کد زدن با استفاد از Requests ساده‌تر است. امکان دارد کاربران با تجربه تفاوت‌های ظریفی بین این دو کتابخانه پیدا کنند، اما Requests برای افراد مبتدی راحت‌تر است.

۰ نظر موافقین ۰ مخالفین ۰