مرکز آموزش و رقابت برنامه نویسی پایتون

۲۰ مطلب با کلمه‌ی کلیدی «آموزش پایتون» ثبت شده است

5 نکته ای که یک برنامه نویس پایتون قبل از ورود به حوزه اقتصاد باید بداند:

نویسنده : Robert Carver

مترجم : آزاده رضازاده همدانی

امروزه برنامه نویسی پایتون یکی از پرتقاضاترین شغل ها در صنعت بانکداری و بیمه محسوب می شود.خوشبختانه فراگیری زبان پایتون بسیار اسان بوده به گونه ای که در مدارس ابتدایی انگلستان برای آموزش مفاهیم پایه برنامه نویسی از این زبان استفاده می­شود. اگر هدف شما از یادگیری پایتون ورود به دنیای سرمایه گذاری و اقتصاد است , بهتر است قبل از شروع چندین نکته را بدانید:

1-    کدام نسخه پایتون مناسب شما است؟ پایتون 2  یا پایتون 3 ؟

معمولا نسخه های جدید یک زبان, علاوه بر دارا بودن امکاناتی جدید, از نسخه های قدیمی نیز پشتیبانی می کنند. این بدین معنی است که با ارتقاء نسخه, همچنان کدهای قبلی نوشته شده قابل اجرا هستند. اما این قانون در مورد پایتون 3 برقرار نیست. بعبارتی پایتون 3 هرگز قادر به پشتیبانی برنامه های نوشته شده با پایتون 2 نمی باشد.  به همین دلیل پس از حدود 10 سال که از ارایه نسخه 3 پایتون می گذرد, نسخه 2 همچنان پشتیبانی می شود. البته ارایه نسخه جدید برای پایتون 2 متوقف شده است. ولی همچنان بطور گسترده در صنعت تجارت و امور مالی و اقتصادی کاربرد دارد.

این امر واضح است که انتخاب نسخه های جدید پایتون 3 و بهره گیری از امکانات جدید آن,  به پیشبرد پروژه های جدید کمک بیشتر خواهد کرد اما گاهی ممکن است در شرایط کاری قرار بگیرید که مجبور به کار با پایتون 2 باشید.پس بهتر است خود را از هم اکنون برای کار با هر نسخه پایتون آماده کنید.

 

2-    کتابخانه های موردنیاز

هسته اصلی پایتون بسیار سبک است بنابراین برای هر هدف و منظوری که دارید باید ابتدا کتابخانه مربود به آن را به هسته اصلی اضافه نمایید. این کتابخانه ها , توابعی را برای اجرای عملیات محاسبات ریاضی, کار با تقویم, کار با داده ها و یا انجام کارهای سیستمی در اختیار شما قرار می دهند.

برای استفاده از پایتون در پروژه های مالی ,  شما به کتابخانه های : numpy (برای کار با آرایه های بزرگ و عملیات مربوط بر روی آنها) , Scipy ( عملیات آماری و توابع ریاضی پیشرفته) , matplotlib (نمایش داده)   نیاز دارید. همچنین به منظور کار های پیچیده تر به کتابخانه های tensorflow( برای بکارگیری الگوریتم های یادگیری ماشین) , pandas ( برای کار با داده ها) و کتابخانه pedigree که توسط شرکت بزرگ AQR پیاده سازی شده است نیاز خواهید داشت.

لازم بذکر است که میتوان از نرم افزار anaconda برای نصب پایتون و هر یک از کتابخانه های دلخواه بهره گرفت.

3-    چگونه میتوان مشکل سرعت را در پایتون حل کرد؟

ممکن است برنامه نویسانی که با زبان هایی مثل c,c++ , Java و ... کار کرده باشند , پایتون را کندتر بدانند هرچند که پایتون در مقایسه با سایر زبانهای محاسباتی مثل Matlab و R از سرعت بالاتری برخوردار می باشد. عموما برنامه نویسان از اغراق در مورد سرعت کدهای ود و کارایی آن لذت می برند اما در واقع بسیاری از کدها چندان ضرورتی برای اجرای سریع ندارند. پایتون در شرایطی که مجبور به اجرای عملیات تکراری بر روی مجموعه داده های بزرگ باشد , بسیار کند و آهسته عمل می کند.

خوشبختانه برای این مشکل یک راه خوب وجود دارد. شما به راحتی می توانید کدهای نوشته شده به زبان های c و c++ را در پایتون جایگذاری نموده و از سرعت و کارایی آنها بهره مند شوید. پس حتما نحوه انجام این کار را فرا بگیرید!

 

4-    پایتون قابلیت کار با داده های حجیم را دارد

شرکت های سرمایه گداری و مالی بزرگ, این روزها به دنبال استفاده از آخرین تکنولوژی های روز دنیا هستند که با منابع جدید داده در ارتباط می باشند. نکته مشترک کلیه منابع داده, حجیم و بزرگ بودن آنهاست. به طور مثال برای استفاده از داده های twitter برای پیش بینی تمایلات بازار , ایده بسیار خوبی است. اما روزانه حدود 500 میلیون توییت جدید تولید می شود که دخیره سازی , پردازش و تحلیل این حجم عظیم داده , فرایندی بسیار پیچیده می باشد.

خوشبختانه پایتون با استفاده از کتابخانه های spark و Hadoop با این قضیه کنار آمده است . واسط های کاربری نیز برای ارتباط پایتون با پایگاه داده هایی غیر از SQL مثل MongoDB و یا ارتباط با provider های فضای ابری پیاده سازی شده اند.

 

5-    از GIL نترسید!

GIL مخفف عبارت Global Interpreter Lock مکانیزمی است که مفسرهای زبان های برنامه نویسی از آن برای همگام سازی thread ها استفاده می کنند . به عبارتی مفسری  که از GIL استفاده می کند تنها در هر لحظه قادر به اجرای یک Thread بر روی پردازنده خواهد بود حتی اگر پردازنده دارای امکانات پردازش چند هسته ای باشد! این ویژگی از دید مخالفان پایتون بسیار مورد نقد واقع شده است. زیرا اجرای تنها یک Thread  در هر لحظه باعث کاهش سرعت اجرا و عدم بهره وری کامل از پردازنده های چندهسته ای می شود.  در واقعیت, چون برنامه ها زمان بسیاری را صرف اتلاف وقت برای وروودی و خروجی می کنند , استفاده از مکانیزم GIL به ندرت ایجاد مشکل می کند. هرچند که عملیات محاسباتی حساس و عظیم می تواند توسط این مکانیزم تحت تاثیر قرار بگیرد. اما باید در نظر گرفت که اجرای چنین عملیاتی بر روی سیستم های رومیزی و لپ تاپ منطقی نبوده و نوعی خودآزاری محسوب می شود! پس به عنوان راه حل می توان کدهای پیچیده خود را به طور موازی بر روی پردازنده های موجود در فضای ابری اجرا نمود.

 

در انتها شاید جالب باشد بدانید که نویسنده مقاله فوق آقای Robert Carver مدیر سابق شرکت بیمه AHL  و نویسنده کتاب های Systematic Trading و Smart Portfolios از حدود 7 سالگی شروع به یادگیری زبان های برنامه نویسی کرده است و زبان های بسیاری را آموخته اما زبانی که هر روز با آن برنامه نویسی می کند , پایتون است!


منبع (+)

۰ نظر موافقین ۰ مخالفین ۰

رگرسیون – ویژگی ها و برچسب ها

مترجم : آزاده رضازاده همدانی

ویدئوهای آموزش یادگیری ماشین یا پایتون [کلیک کنید]

در دنباله آموزش­های یادگیری ماشین, مثال رگرسیون بر روی داده­های ارزش سهام را ادامه می­دهیم: کدهایی که در مرحله قبل نوشتیم به صورت زیر است:

در ادامه باید تعدادی از کتابخانه­ها را import کنیم:

·         numpy: داده ها را به آرایه ( numpy Array ) تبدیل کرده تا بتوان آنها را در اختیار scikit-learn قرار داد.

·         ماژول پیش پردازش Preprocessing و اعتبارسنجی CrossValidation: که بیشتر در طول کدنویسی در مورد آنها توضیح خواهیم داد. اما به طور خلاصه کافی است بدانید که پیش پردازش, مرحله پاکسازی و مقیاس بندی داده­ها قبل از شروع عملیات یادگیری ماشین و اعتبار سنجی فاز آزمایش نتایج حاصل از اجرای الگوریتم یادگیری ماشین است.

·         الگوریتم linear Regression : همان الگوریتم رگرسیون خطی است.

·         Svm: الگوریتم یادگیری ماشین به کار رفته برای نمایش نتایج

تا این مرحله داده­های سودمند را دریافت کرده­ایم اما واقعا یادگیری ماشین چگونه کار میکند؟ در یادگیری بانظارت, مجموعه­ای از ویژگی­ها Features و برچسب­ها Labels را داریم. ویژگی­ها, خصوصیات توصیفی هر نمونه و برچسب, کلاسی است که در واقع نمونه به آن تعلق دارد و قرار است توسط یادگیری ماشین, پیش­بینی شود.  یکی از مثال­های رایج در رگرسیون, پیش­ بینی ارزش حق بیمه اشخاص است. شرکت بیمه اطلاعاتی از جمله سن, سوابق تخلفات رانندگی, سوابق سوء پیشینه و میزان اعتبار بانکی شخص را جمع آوری میکند. البته این داده­ها را از طریق اطلاعات مشتریان گذشته دریافت کرده تا حق بیمه مطلوب را پیش بینی نماید. در این مثال مشخصات هر مشتری به عنوان ویژگی­ها و حق بیمه به عنوان برچسب مرتبط با هر مشتری در نطر گرفته می­شود.

در مورد مثال بالا ویژگی­ها و برچسب چگونه تعیین می­شود؟ از آنجایی که هدف پیش بینی قیمت است آیا قیمت به عنوان برچسب در نطر گرفته می­شود؟ ویژگی­ها چطور؟ ویژگی­ها عبارتند از : قیمت فعلی, درصد high-low و درصد نوسانات تغییرات. قیمت آینده Future price به عنوان برچسب در این مثال در نظر گرفته می­شود.

حال کمی جلوتر برویم و خطوطی جدید را اضافه نماییم:

در اینجا ابتدا ستونی را به عنوان ستون پیش بینی(forecast_col) تعیین می­کنیم. سپس کلیه مقادیر نامعتبر NAN(not a number) را با مقدار99999-  جایگزین می­نماییم. از آنجایی که نمیتوان یک داده ناقص با مقادیر نامعتبر را به دسته­بند یادگیری ماشین ارسال کرد لذا راهکار­های متعددی برای حذف داده­های ناقص وجود دارد. از جمله: جایگزینی مقادیر نامعتبر با مقدار 99999-  که داده را به منزله یک داده پرت تلقی می­کند. و همچنین حذف کلیه داده­های ناقص. اما این کار احتمال از دست دادن حجم عطیمی از اطلاعات مفید را ایجاد می­کند.

بر خلاف مجموعه داده مربوط به ارزش و تعداد سهام که شامل داده­های کامل و بدون نقصی می­باشد, مجموعه داده­های دنیای واقعی بسیار ناقص و نامعتبر و یا به اصطلاح کثیف Messy می­باشند. اما شما لزوما نیازی به تضمین صحت همه داده­ها نخواهید داشت و حتی میتوانید شرط ببندید که داده­های واقعی مورد استفاده در الگوریتم یادگیری ماشین حتما دارای نقص­هایی می­باشند. بنابراین باید مراحل آموزش و آزمایش نتایج را به ظور زنده بر روی داده­های واقعی یکسان با تمام ویژگی­های آنها انجام داد.

در نهایت تعداد مواردی که میخواهیم پیش­بینی کنیم تعیین می­شود (forecast_out) .در بسیاری موارد به طور مثال پیش بینی حق بیمه, "در همان لحظه", تنها به یک عدد نیاز داریم درحالی که اصولا بدنبال پیش­بینی تعداد مشخصی از داده­ها هستیم.  معمولا هدف, پیش بینی %1  تعداد کل رکورد­های موجود در دیتاست در آینده است. این بدین معنی است که مثلا با داشتن 100 روز ارزش سهام ,هدف, پیش بینی ارزش سهام در یک روز آینده است. پس آنچه ا که می­خواهید, مشخص کنید! اگر تمایل به پیش بینی قیمت فردا را دارید مقدار forecast-out=1 خواهد بود. و اگر مقدار forecast-out=10 باشد یعنی شما قابلیت پیش بینی قیمتها تا ده روزآینده (یک هفته و نیم آینده) را خواهید داشت.

در مثال اولیه مجموعه ای از مقادیر فعلی را به عنوان ویژگی و قیمت آینده (منظور از آینده %1  تعداد داده­های موجود در دیتاست می­باشد )را به عنوان برچسب در نظر گرفتیم. از آنجایی که همه ستون­های فعلی را به عنوان ویژگی در نظر گرفته ایم لذا با یک عملیات ساده موجود در کتابخانه pandas , ستونی جدید برای برچسب ایجاد می نماییم.

تا اینجا ویژگی­ها و برچسب همه نمونه ­ها  معین گردید. در مرحله بعد پس از انجام عملیات پیش پردازش , نمونه ­ها در اختیار الگوریتم رگرسیون قرار خواهند گرفت که در بخش های آینده پیرامون آن صحبت خواهد شد.


۰ نظر موافقین ۰ مخالفین ۰

شش وب‌سایت عالی برای آموزش زبان برنامه‌نویسی پایتون

در یک دهه گذشته زبان برنامه‌نویسی پایتون به یکی از محبوب‌ترین زبان‌های کدنویسی تبدیل شده است. از توسعه‌دهندگان وب گرفته تا طراحان بازی‌های ویدئویی، از دانشمندان داده تا سازندگان ابزار خانگی بسیاری از برنامه‎‌نویسان عاشق پایتون شده‌اند. اما چرا؟ زیرا یادگیری پایتون ساده است، استفاده از آن ساده است و بسیار زبان قدرتمندی است. 

دوست دارید زبان برنامه نویسی پایتون یادبگیرید؟ در این مقاله ما چند سایت و منبع آنلاین خیلی خوب را برای آموزش پایتون به شما معرفی می‌کنیم که بیشتر آن‌ها رایگان است. 

 

1- How to Think Like a Computer Scientist

phython

 

یکی از بهترین سایت‌های آموزش پایتون How to Think Like a Computer Scientist است. این سایت نه تنها به شما آموزش می‌دهد چگونه از زبان برنامه نویسی پایتون استفاده کنید بلکه به شما یاد می‌دهد چگونه مانند یک برنامه‌نویس فکر کنید. اگر این اولین باری است که کدنویسی می‌کنید این سایت به درد شما نخواهد خورد. 

اما به یاد داشته باشید که این که بتوانید مانند یک دانشمند کامپیوتر فکر کنید نیازمند این است که طرز فکر خود را تغییر دهید. این کار برای بعضی‌ها ساده و برای بقیه دشوار است. اما اگر اراده داشته باشید می‌توانید این کار را انجام دهید. وقتی که یاد گرفتید که مثل یک دانشمند کامپیوتر فکر کنید می‌توانید به سادگی زبان‌های دیگر را به جز پایتون یاد بگیرید. 


2- سایت رسمی پایتون

python

 

چه روشی برای یادگیری پایتون بهتر از استفاده از سایت رسمی پایتون است؟ سازندگان این زبان خودشان یک راهنمای خیلی خوب ساخته‌اند که به هرکسی که بخواهد این زبان را از ابتدا یاد بگیرد کمک می‌کنند. 

بهترین قسمت این سایت آموزشی این است که بسیار آرام پیش می‌رود و مفاهیم خاص را طوری به شما آموزش می‌دهد تا پیش از رفتن به مبحث بعد کاملاً یاد بگیرید. فرمت این سایت بسیار ساده و دوست‌داشتنی است و روند کار را بسیار برای شما ساده‌تر خواهد کرد. 

اگر در زمینه برنامه نویسی پیش‌زمینه دارید شاید سایت آموزشی رسمی پایتون برایتان تا حدی خسته کننده باشد اما اگر خیلی تازه‌کار هستید این سایت تجربه بسیار خوبی برای شما خواهد بود. 

 

3- A Byte of Python

python

 

سایت آموزشی A Byte of Python برای کسانی مناسب است که دوست دارند پایتون یاد بگیرند و قبلاً تجربه برنامه نویسی دارند. در ابتدا چیزهایی درمورد مباحث لازم برای ایجاد یک اینترپرتر پایتون روی کامپیوتر را به شما یاد می‌دهد که ممکن است برای تازه‌کارها دشوار باشد. 

اما این سایت یک مشکل اساسی دارد: خیلی سریع پیش می‌رود که ممکن است برای تازه‌کارها بیش از حد سخت باشد. 

اما اگر بتوانید با آن پیش بروید  A Byte of Python منبع بسیار خوبی برای شما خواهد بود. اگر نتوانستید می‌توانید از منابع دیگر برای یادگیری پایتون استفاده کنید و وقتی که کمی حرفه‌ای شدید به این سایت بازگردید. 

 

4- LearnPython

 

python


برخلاف سایت‌های آموزشی که در بالا معرفی کردیم LearnPython یک سایت عالی است چرا که خودش یک اینترپرتر پایتون دارد. در نتیجه شما می‌توانید درون خود سایت از کدنویسی پایتون استفاده کنید و دیگر لازم نیست که یک اینترپرتر پایتون را روی سیستم خود نصب کنید. 

البته اگر قصد دارید جدی از این زبان استفاده کنید باید اینترپرتر را نصب کنید اما LearnPython به شما این امکان را می‌دهد تا پیش از این که به طور جدی روی پایتون سرمایه‌گذاری کنید فکر کنید و با آن آشنا شوید.  

با LearnPython می‌توانید با کدهای واقعی سروکله بزنید و آن را یاد بگیرید. درضمن پس از هر درس یک تمرین نیز به شما داده می‌شود. 

 

5- Learn X in Y Minutes: Python 3

python

 

اگر تجربه زیادی در برنامه نویسی دارید و می‌دانید چطور مثل یک برنامه نویس فکر کنید اما پایتون برای شما جدید است و دوست دارید سینتکس این زبان را یاد بگیرید Learn X in Y Minutes بهترین سایت برای شماست. 

این سایت طیف‌های نحوی یا سینتتیک پایتون را در فرمت کد به شما یاد می‌دهد در نتیجه شما می‌‎توانید زیر پانزده ثانیه همه‌ی چیزهای مهم را درمورد سینتکس پایتون بیاموزید. شما می‌توانید صفحه‌ای که در آن قرار دارید را بوکمارک کرده و هرگاه که چیزی را فراموش کردید به آن برگردید. 

 

6- CodeWars

python

 

CodeWars خیلی یک سایت آموزشی نیست بلکه یک روشی بازی و آزمایشی است تا میزان دانش برنامه‌نویسی خود را امتحان کنید. این سایت دارای صدها پازل کدنویسی مختلف است که شما را مجبور می‌کند تا دانش پایتون خود را آزمایش کرده و از آن‌ها در مشکلات واقعی استفاده کنید. 

پازل‌های CodeWars جنبه آموزشی نیز دارند و هرچه شما بیشتر پیش بروید چیزهای بیشتری یادخواهید گرفت. وقتی که شما یک پازل را کامل کنید به مرحله بالا رفته و به پازل‌های سخت‌تر دسترسی خواهید داشت. درضمن شما می‌توانید نتایج خود را با نتایج دیگران مقایسه کنید که در آموزش شما بسیار مفید خواهد بود. 

پایتون زبان برنامه نویسی بسیار قوی و ساده‌ای است که موارد استفاده بسیار زیادی دارد و در چند سال اخیر بیش از پیش محبوب شده‌ است و روزبه‌روز محبوب‌تر می‌شود. 

  

منبع: makeuseof



اما هفتمین سایت، معرفی آموزش های فارسی بصورت ویدئویی سایت چالش پایتون هست
که توسط مدرسین فارغ التحصیل دانشگاه صنعتی امیرکیر تدریس شده است.
در این سایت که تمرکز اصلی بر روی آموزش های مرتبط با هوش مصنوعی و علم داده هست
 آموزش مقدماتی، تکمیلی پایتون در کنار آموزش یادگیری ماشین و پردازش تصویر با پایتون قرار دارد.
۰ نظر موافقین ۰ مخالفین ۰

دوره یادگیری ماشین با پایتون

به عنوان یکی از شاخه‌های وسیع و پرکاربرد هوش مصنوعی، یادگیری ماشین (Machine learning) به تنظیم و اکتشاف شیوه‌ها و الگوریتم‌هایی می‌پردازد که بر اساس آنها رایانه‌ها و سامانه‌ها توانایی تعلٌم و یادگیری پیدا می‌کنند

هدف یادگیری ماشین این است که کامپیوتر (در کلی‌ترین مفهوم آن) بتواند به تدریج و با افزایش داده‌ها کارایی بهتری در انجام وظیفه مورد نظر پیدا کند. گستره این وظیفه می‌تواند از تشخیص خودکار چهره با دیدن چند نمونه از چهره مورد نظر تا فراگیری شیوه گام‌برداری روبات‌های دوپا با دریافت سیگنال پاداش و تنبیه باشد.

پیش بینی می شود در آینده استفاده از زبان برنامه نویسی پایتون، گسترش بسیار بیشتری داشته باشد

در حوزه تحلیل داده، یادگیری ماشین و علم داده نیز، استفاده از پایتون بسیار قابل توجه است به طوری که این زبان پرکاربردترین زبان در حوزه علم داده و یادگیری ماشین می باشد:

با توجه به درخواست‌های مخاطبین جهت برگزاری کلاس‌های پرسش و پاسخ با مدرس دوره، تصمیم گرفته شد تا دوره یادگیری ماشین با پایتون به صورت هفتگی برگزار شود.

در این دوره، که از اول آذر 97 شروع خواهد شد هر هفته دو ویدئو از طریق سامانه کلاس کوئرا و کانال یادگیری ماشین برای مخاطبین ارسال خواهد شد.و تمرینات و تکالیفی در این سامانه توسط مدرس تعیین و تصحیح خواهد شد. مخاطبینی که تمایل دارند خود را درگیر این دوره نمایند و چالش بیشتری رو تجربه کنند تا موفق تر باشند توصیه ما انتخاب همین دوره همراه با کلاس می باشد.

بعد از پرداخت هزینه، آدرس کانال و نحوه عضویت در سامانه کوئرا قابل مشاهده می‌باشد. در این روش هیچ گونه ویدئویی به محض پرداخت برایتان ارسال نخواهد شد. بلکه ویدئوها بصورت هفتگی از طریق سامانه کوئرا و پست الکترونیکی ثبت شده برایتان ارسال می‌گردد.

در این روش مدرس دوره در طی دوره تمریناتی را در اختیار شما قرار خواهد داد و تصحیح خواهد نمود و همراه شما در کل دوره خواهد بود. مدت زمان این دوره 13 هفته می‌باشد که از هفته اول آذر شروع خواهد شد. توصیه ما بر مخاطبینی که تمایل دارند بیشتر خود را درگیر این دوره نمایند انتخاب همین روش می‌باشد.

📘 حجم کل جلسات : 3 GB

📘 زمان کل جلسات : 16 ساعت

📘 میزان تخفیف : 10000 تومان

📘 کد تخفیف (با حروف کوچک وارد کنید) : mchntwo

۰ نظر موافقین ۰ مخالفین ۰

راهنمای سریع (Cheat Sheet) دستورهای پایتون برای علم داده - Matplotlib

برای دانلود راهنمای سریع (Cheat Sheet) دستورهای پایتون برای علم داده میتوانید از طریق لینک زیر اقدام کنید.


این بخش کتابخانه Matplotlib را شامل می شود.



۰ نظر موافقین ۰ مخالفین ۰

نمودارهای مقایسه ای زبان های برنامه نویسی در حوزه یادگیری ماشین


۰ نظر موافقین ۰ مخالفین ۰

راهنمای سریع (Cheat Sheet) دستورهای پایتون برای علم داده - pandas

برای دانلود راهنمای سریع (Cheat Sheet) دستورهای پایتون برای علم داده میتوانید از طریق لینک زیر اقدام کنید.


این بخش کتابخانه pandas را شامل می شود.


دانلود

۰ نظر موافقین ۰ مخالفین ۰

sort کردن دیکشنری

برای مرتب کردن یک دیکشنری بر اساس مقدار میتوانیم از دو روش زیر استفاده نماییم:

'''@author pythonchallenge.ir  @telegram @pythonchallenge'''

xs = {'a': 4, 'b': 3, 'c': 2, 'd': 1}

sorted(xs.items(), key=lambda x: x[1])
نتیجه
[('d', 1), ('c', 2), ('b', 3), ('a', 4)]

import operator

xs = {'a': 4, 'b': 3, 'c': 2, 'd': 1}

sorted(xs.items(), key=operator.itemgetter(1))
نتیجه
[('d', 1), ('c', 2), ('b', 3), ('a', 4)]

۰ نظر موافقین ۰ مخالفین ۰

ادغام کردن دو تا دیکشنری

برای ادغام کردم دو دیکشنری بصورت زیر کد را می نویسیم. فقط دقت کنید که در ادغام به اینصور اگر کلید تکراری وجود داشت، کلید عنصر سمت چپ را فقط در نظر خواهد گرفت.


'''@author python.pythonchallenge'''

x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z1 = {**x, **y}
z2 = {**y, **x}


print('z1 : ',z1)
print('z2 : ',z2)
نتیجه :

z1 :  {'a': 1, 'b': 3, 'c': 4}
z2 :  {'b': 2, 'c': 4, 'a': 1}
۰ نظر موافقین ۰ مخالفین ۰

استخراج ارقام از یک رشته

برای اینکه بتوانیم داخل یک رشته شامل عدد، تمام اعداد را بصورت تک به تک استخراج کنیم میتوانید از کد زیر استفاده نماییم.

'''@ author python.pythonchallenge'''

a = '1a3wer45R04iop'


digits = [int(''.join(i)) for i in a if i.isdigit()]

print (digits)

print ('sum: ',sum(digits))
۰ نظر موافقین ۰ مخالفین ۰