مرکز آموزش و رقابت برنامه نویسی پایتون

دوره یادگیری ماشین با پایتون

به عنوان یکی از شاخه‌های وسیع و پرکاربرد هوش مصنوعی، یادگیری ماشین (Machine learning) به تنظیم و اکتشاف شیوه‌ها و الگوریتم‌هایی می‌پردازد که بر اساس آنها رایانه‌ها و سامانه‌ها توانایی تعلٌم و یادگیری پیدا می‌کنند

هدف یادگیری ماشین این است که کامپیوتر (در کلی‌ترین مفهوم آن) بتواند به تدریج و با افزایش داده‌ها کارایی بهتری در انجام وظیفه مورد نظر پیدا کند. گستره این وظیفه می‌تواند از تشخیص خودکار چهره با دیدن چند نمونه از چهره مورد نظر تا فراگیری شیوه گام‌برداری روبات‌های دوپا با دریافت سیگنال پاداش و تنبیه باشد.

پیش بینی می شود در آینده استفاده از زبان برنامه نویسی پایتون، گسترش بسیار بیشتری داشته باشد

در حوزه تحلیل داده، یادگیری ماشین و علم داده نیز، استفاده از پایتون بسیار قابل توجه است به طوری که این زبان پرکاربردترین زبان در حوزه علم داده و یادگیری ماشین می باشد:

با توجه به درخواست‌های مخاطبین جهت برگزاری کلاس‌های پرسش و پاسخ با مدرس دوره، تصمیم گرفته شد تا دوره یادگیری ماشین با پایتون به صورت هفتگی برگزار شود.

در این دوره، که از اول آذر 97 شروع خواهد شد هر هفته دو ویدئو از طریق سامانه کلاس کوئرا و کانال یادگیری ماشین برای مخاطبین ارسال خواهد شد.و تمرینات و تکالیفی در این سامانه توسط مدرس تعیین و تصحیح خواهد شد. مخاطبینی که تمایل دارند خود را درگیر این دوره نمایند و چالش بیشتری رو تجربه کنند تا موفق تر باشند توصیه ما انتخاب همین دوره همراه با کلاس می باشد.

بعد از پرداخت هزینه، آدرس کانال و نحوه عضویت در سامانه کوئرا قابل مشاهده می‌باشد. در این روش هیچ گونه ویدئویی به محض پرداخت برایتان ارسال نخواهد شد. بلکه ویدئوها بصورت هفتگی از طریق سامانه کوئرا و پست الکترونیکی ثبت شده برایتان ارسال می‌گردد.

در این روش مدرس دوره در طی دوره تمریناتی را در اختیار شما قرار خواهد داد و تصحیح خواهد نمود و همراه شما در کل دوره خواهد بود. مدت زمان این دوره 13 هفته می‌باشد که از هفته اول آذر شروع خواهد شد. توصیه ما بر مخاطبینی که تمایل دارند بیشتر خود را درگیر این دوره نمایند انتخاب همین روش می‌باشد.

📘 حجم کل جلسات : 3 GB

📘 زمان کل جلسات : 16 ساعت

📘 میزان تخفیف : 10000 تومان

📘 کد تخفیف (با حروف کوچک وارد کنید) : mchntwo

۰ نظر موافقین ۰ مخالفین ۰

آینده پردازش تصویر

پردازش تصویر شروعی بر پایان جستجوی متنی

اگر شما وارد کشوری شوید که زبان آن کشور را بلد نباشید نمی توانید یک وعده غذایی دلخواه داشته باشید و یا موقع رانندگی نمی توانید مسیرها را بشناسید و راه خود را پیدا کنید. بسیاری از گردشگران خود را در چنین موقعیت هایی دیده اند.در اینده ای نه چندان دور، جستجو به صورت متنی شاید دیگر کاربرد چندانی نداشته باشد و جای خود را به طور کلی به پردازش تصویر ، پردازش ویدئو و پردازش صوت بدهد. مدیر ارشد پروژه های مرتبط با موتور جستجوگر گوگل می گوید : ” گوگل همیشه یک راه حل برای راحتی شما دارد. هرکجای دنیا که هستید با تلفن همراه خود از موضوع مورد نظر خود یک عکس بگیرید و برای جستجوگر گوگل ارسال کنید،همانند جستجوی ساده ی یک متن ، گوگل شما را راهنمایی خواهد کرد.

در حال حاضر طبق تحقیقاتی که در دانشگاه کارولینای جنوبی در حال انجام است، پردازش تصویر به نابینایان این امکان را داده است که به سادگی مسیریابی کنند؛ به این شکل که فرد نابینا یک جلیقه و یک عینک به چشم می گذارد. حس گرهای ۳ بعدی و سنسورهای روی جلیقه که مانند لرزشگر تلفن همراه است این امکان را به فرد نابینا می دهد که مسیریابی را انجام دهد و هر کجای شهر که بخواهد، مسیریابی کند

از دیگر کاربردهای این تکنولوژی می توان به راننده خودکار گوگل اشاره کرد که با بررسی تصاویر دوربین های ترافیکی و درک ۳ بعدی از موقعیت خودرو نسبت به اجسام دیگر و سایر خودرو ها، شما را به مقصد می رساند. همچنین از پردازش تصویر برای تشخیص چهره مجرمین استفاده می کنند تا جایی که با شناسایی آن ها از وقوع جرم جدید پیشگیری می کنند.

آینده پردازش تصویر

پردازش تصویر ، رابطه بین انسان و رایانه را به طرز شگفت انگیزی متفاوت خواهد کرد. ابزارهایی مانند Google Street View  و وسایل نقلیه اتوماتیک مانند خودروی گوگل آینده جهان را در دست خواهند گرفت. همچنین در حوزه صنعت هوایی نیز هواپیماهای بدون سرنشین می توانند به مرور جایگزین هواپیماهای فعلی شوند.

 

در حوزه پزشکی نیز ربات هایی مثل daVinci هستند که امکان تشخیص و جراحی های از راه دور بسیار حساس را به پزشکان می دهند. با استفاده از پردازش تصویر و تطبیق با الگوریتم های روانشناسی، حالات درونی یک فرد را قابل حدس زدن است تا جایی که در پیش بینی رفتار مشتریان کاربرد دارد. ذات انسان ها به گونه است که اطلاعات تصویری را سریع تر از داده های متنی بررسی می کند؛ یک داده تصویری می تواند شامل حجم زیادی داده متنی باشد؛ بزودی موتورهای جستجو مبتنی بر پردازش تصویر مانند Imagenistics ، جای موتورهای جستجوگر فعلی که بر مبنای پردازش متن هستند را خواهند گرفت.

از دیگر ابعاد پیشرفت پردازش تصویر می توان به نسل جدید دوربین های تلفن همراه اشاره کرد. تلاش های زیادی برای رسیدن به سطح پردازش تصویر بینایی انسان انجام شده است تا بتوان به درک چشم انسان برسد و چشم ما را به نادیده ها نیز باز کنند. در آینده به جای تصویر برداری بر پایه سه رنگ اصلی از تصویر برداری با سنسورهای Hyperspectral استفاده خواهد شد؛ این نوع تصویر برداری برای در صنعت کشاورزی می تواند محصولات سالم را از ناسالم در برای ما متمایز کند. هنوز درک روشنی از پردازش تصویر بر صنایع در دست نیست، ولی گوگل ادعا می کند که تا ۳ سال آینده ۳۰ درصد پردازش های متنی جای خود را به پردازش تصویر خواهند داد.


۰ نظر موافقین ۰ مخالفین ۰

راهنمای سریع (Cheat Sheet) دستورهای پایتون برای علم داده - Matplotlib

برای دانلود راهنمای سریع (Cheat Sheet) دستورهای پایتون برای علم داده میتوانید از طریق لینک زیر اقدام کنید.


این بخش کتابخانه Matplotlib را شامل می شود.



۰ نظر موافقین ۰ مخالفین ۰

نمودارهای مقایسه ای زبان های برنامه نویسی در حوزه یادگیری ماشین


۰ نظر موافقین ۰ مخالفین ۰

راهنمای سریع (Cheat Sheet) دستورهای پایتون برای علم داده - pandas

برای دانلود راهنمای سریع (Cheat Sheet) دستورهای پایتون برای علم داده میتوانید از طریق لینک زیر اقدام کنید.


این بخش کتابخانه pandas را شامل می شود.


دانلود

۰ نظر موافقین ۰ مخالفین ۰

sort کردن دیکشنری

برای مرتب کردن یک دیکشنری بر اساس مقدار میتوانیم از دو روش زیر استفاده نماییم:

'''@author pythonchallenge.ir  @telegram @pythonchallenge'''

xs = {'a': 4, 'b': 3, 'c': 2, 'd': 1}

sorted(xs.items(), key=lambda x: x[1])
نتیجه
[('d', 1), ('c', 2), ('b', 3), ('a', 4)]

import operator

xs = {'a': 4, 'b': 3, 'c': 2, 'd': 1}

sorted(xs.items(), key=operator.itemgetter(1))
نتیجه
[('d', 1), ('c', 2), ('b', 3), ('a', 4)]

۰ نظر موافقین ۰ مخالفین ۰

ادغام کردن دو تا دیکشنری

برای ادغام کردم دو دیکشنری بصورت زیر کد را می نویسیم. فقط دقت کنید که در ادغام به اینصور اگر کلید تکراری وجود داشت، کلید عنصر سمت چپ را فقط در نظر خواهد گرفت.


'''@author python.pythonchallenge'''

x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z1 = {**x, **y}
z2 = {**y, **x}


print('z1 : ',z1)
print('z2 : ',z2)
نتیجه :

z1 :  {'a': 1, 'b': 3, 'c': 4}
z2 :  {'b': 2, 'c': 4, 'a': 1}
۰ نظر موافقین ۰ مخالفین ۰

استخراج ارقام از یک رشته

برای اینکه بتوانیم داخل یک رشته شامل عدد، تمام اعداد را بصورت تک به تک استخراج کنیم میتوانید از کد زیر استفاده نماییم.

'''@ author python.pythonchallenge'''

a = '1a3wer45R04iop'


digits = [int(''.join(i)) for i in a if i.isdigit()]

print (digits)

print ('sum: ',sum(digits))
۰ نظر موافقین ۰ مخالفین ۰

راهنمای سریع (Cheat Sheet) دستورهای پایتون برای علم داده - keras

برای دانلود راهنمای سریع (Cheat Sheet) دستورهای پایتون برای علم داده میتوانید از طریق لینک زیر اقدام کنید.

این بخش کتابخانه keras برای شبکه های عصبی را شامل می شود.


دانلود

۰ نظر موافقین ۰ مخالفین ۰

لیستی از کتابخانه‌ها علم داده در پایتون

NumPy سرنامی برای  Numerical Python است. قدرتمندترین ویژگی این کتابخانه، آرایه‌های n-بُعدی هستند. این کتابخانه همچنین شامل توابع پایه‌ای جبر خطی، تبدیل فوریه، تولید پیشرفته اعداد تصادفی و ابزارهایی جهت یکپارچه‌سازی با دیگر زبان‌های سطح پایین مانند C++ ، C و فورترن (Fortran) است.

SciPy سرنامی برای Scientific Python است. SciPy براساس NumPy ساخته شده و یکی از پرکاربردترین کتابخانه‌ها برای انواع گسترده‌ای از ماژول‌های سطح بالای علمی و مهندسی مانند تبدیل فوریه گسسته (discrete Fourier transform)، جبر خطی، بهینه‌سازی و «ماتریس‌های خلوت یا اسپارس» (Sparse Matrix) محسوب می‌شود.

Matplotlib برای ترسیم انواع گسترده‌ای از نمودارها، از هیستوگرام و نمودارهای خطی گرفته تا نمودارهای حرارتی قابل استفاده است. می‌توان از ویژگی Pylab در ipython notebook (به صورت ipython notebook –pylab = inline) به منظور بهره‌گیری از ویژگی‌ رسم نمودار به صورت خطی استفاده کرد. اگر ویژگی inline توسط کاربر نادیده گرفته شود، pylab محیط ipython را به محیطی بسیار شبیه به «متلب» (Matlab) مبدل می‌کند.

Pandas برای عملیات روی داده‌های ساختار یافته و دستکاری آن‌ها مورد استفاده قرار می‌گیرد. این کتابخانه به طور گسترده‌ای برای «data munging» (این عبارت یک تعریف استاندارد برای انجام تغییرات غیر قابل بازگشت در داده‌ها است. به نظر می‌رسد عبارت mung سرنام برگرفته شده از Mash Until No Good باشد. در واقع، عبارت data munging اغلب به فرآیند دریافت داده‌های خام و تبدیل و نگاشت آن‌ها به دیگر فرمت‌ها به منظور آماده‌سازی مجموعه داده جهت انجام تحلیل‌های تخصصی، اشاره دارد و از آماده‌سازی داده‌ها به عنوان مقدمه‌ای جهت تحلیل‌ها استفاده می‌شود. Pandas در سال‌های اخیر به پایتون اضافه و منجر به افزایش استفاده از آن در جامعه دانشمندان داده شده است.

Scikit Learn کتابخانه‌ای برای یادگیری ماشین است. این کتابخانه بر اساس SciPy، NumPy و matplotlib ساخته شده و شامل ابزارهای کارآمدی برای یادگیری ماشین و مدل‌سازی آماری شامل «دسته‌بندی» (classification)، «رگرسیون» (regression)، «خوشه‌بندی» (clustering) و «کاهش ابعاد» (dimensionality reduction) است.

Statsmodels برای مدل‌سازی آماری مورد استفاده قرار می‌گیرد. این کتابخانه یک ماژول از پایتون است که به کاربران امکان اکتشاف در داده‌ها، تخمین مدل‌های آماری و انجام آزمون‌های آماری را می‌دهد. Statsmodels یک لیست گسترده از «آمار توصیفی» (descriptive statistics)، «آزمون‌های آماری» (statistical tests)، توابع ترسیم نمودار و نتایج آماری برای انواع گوناگونی از داده‌ها و برآوردگرها است.

Seaborn یک کتابخانه پایتون برای بصری‌سازی آماری داده‌ها است. این کتابخانه برای ساخت گرافیک‌های آماری اطلاعاتی و جذاب در پایتون قابل استفاده و برمبنای matplotlib ساخته شده. هدف Seaborn آن است که بصری‌سازی را به بخش مرکزی اکتشاف و ادراک داده‌ها مبدل کند.

Bokeh برای ساخت نمودارهای تعاملی، دشبوردها و برنامه‌های داده در مرورگرهای مدرن مورد استفاده قرار می‌گیرد. این کتابخانه کاربر را قادر به تولید گرافیک‌های ظریف و مختصری به سبک D3.js می‌سازد. علاوه بر آنچه گفته شد، این کتابخانه توانایی تعامل با کارایی بالا در مجموعه داده‌های بسیار بزرگ یا جریانی را دارا است.

Blaze به منظور گسترش توانایی‌های Numpy و Pandas برای مجموعه داده‌های توزیع شده و جریانی، مورد استفاده قرار می‌گیرد. این کتابخانه قابل استفاده به منظور دسترسی داشتن به داده‌ها از طریق گروه کثیری از منایع شامل Bcolz ،MongoDB ،SQLAlchemy ،Apache Spark ،PyTables و دیگر موارد است. Blaze در کنار کتابخانه Bokeh می‌تواند به عنوان یک ابزار بسیار قدرتمند جهت ساخت آثاری بصری (گرافیک‌ها و نمودارها) و دشبوردهای موثر برای مجموعه‌های عظیم داده مورد استفاده قرار بگیرد.

Scrapy کتابخانه‌ای برای «خزیدن در وب» (web crawling) است. این کتابخانه برای کشف الگوهای خاص در داده‌ها بسیار مفید به حساب می‌آید. Scrapy توانایی آغاز به کار کردن در URL خانگی وب‌سایت و کاوش کردن در صفحه وب برای گردآوری اطلاعات را دارد.

SymPy برای «محاسبات نمادین» (Symbolic Computation) مورد استفاده قرار می‌گیرد و دارای طیف وسیعی از توانایی‌ها از ریاضیات نمادین پایه گرفته تا حساب، جبر، ریاضیات گسسته و فیزیک کوانتوم است. دیگر ویژگی کارآمد این کتابخانه، توانایی قالب‌بندی نتایج محاسبات به صورت کد «لاتک» (LaTeX) است.

Requests برای دسترسی به وب است. این کتابخانه به صورت مشابه با کتابخانه پایتون استاندارد urllib2 مورد استفاده قرار می‌گیرد، اما کد زدن با استفاد از Requests ساده‌تر است. امکان دارد کاربران با تجربه تفاوت‌های ظریفی بین این دو کتابخانه پیدا کنند، اما Requests برای افراد مبتدی راحت‌تر است.

۰ نظر موافقین ۰ مخالفین ۰